

UNIVERSITY OF NORTH BENGAL

B.A./B.Sc. Honours 2nd Semester Examination, 2023

CC4-ECONOMICS (204)

MATHEMATICAL METHODS FOR ECONOMICS-II

Time Allotted: 2 Hours

The figures in the margin indicate full marks.

GROUP-A

- 1. Answer any *four* questions from the following:
 - (a) Solve the equation $\frac{dy}{dt} + 4y = 0$ with initial condition y(0) = 1.
 - (b) Explain the concept of damped oscillation in respect of Cobweb model with supporting graph.
 - (c) Explain the concept of 'degeneracy' in LPP.
 - (d) Explain the concept of 'Fair game' with a supporting example.
 - (e) Distinguish between 'mixed strategy' and 'pure strategy'.
 - (f) Given the warranted rate of growth as s/v determine the Harrodian growth path of income.

GROUP-B

	Answer any <i>four</i> questions from the following	6×4 =24
2.	Analyze the following market model for stability of price	6
	$Q_d = 10 - 5P$	
	$Q_s = -10 + 5P$	
	and $\frac{dP}{dt} = 3(Q_d - Q_s)$, where notations have their usual meanings.	
3.	In the multiplier-accelerator model of Samuelson it is given that $C_t = 0.8 y_{t-1}$,	6
	$I_t = 0.2(y_{t-1} - y_{t-2})$. Show that the time path of income in this case will be	
	converging (where the notations have their usual meanings).	
4.	Explain briefly the two-person zero-sum game.	6
5.	Solve the following LPP using graphical method.	6
	Maximize: $Z = 10x_1 + x_2$	
	Subject to : $2x_1 + x_2 \le 4$	
	$3x_1 + 2x_2 \le 6$	

 $x_1, x_2 \ge 0$

3×4 = 12

Full Marks: 60

UG/CBCS/B.A./B.Sc./Hons./2nd Sem./Economics/ECONCC4/2023

6. Solve the following problem using Dominance property:

Player B

		B_1	B_2	B_3	B_4	B_5
	A_1	1	2	3	4	5]
	A_2	1	2	3	7	4
Player A	A_3	3	4	1	5	6
	A_4	6	5	7	6	5
	A_5	2	6	6	<i>B</i> ₄ 4 7 5 6 3	1

7. Consider the pay-off

Player B $B_1 \quad B_2 \quad B_3 \quad B_4$ Player A $A_1 \begin{bmatrix} -6 & -1 & 4 & 3 \\ A_2 \begin{bmatrix} 7 & -2 & 5 & 7 \end{bmatrix}$

Check if the above game bears a "saddle point".

GROUP-C

Answer any *two* questions from the following $12 \times 2 = 24$

8. For the Simple Cobweb model given below, determine the different stability 12 conditions for the time path of price

$$Q_t^d = a + b P_t$$
$$Q_t^s = g + h P_{t-1}$$
$$Q_t^d = Q_t^s$$

where notations have their usual meanings.

- 9. Derive Domar's growth model and interpret the result. 8+4
- 10. Solve the following LPP using Simplex Method:

Maximize:
$$Z = 5x_1 + 3x_2$$

Subject to : $x_1 + x_2 \le 10$
 $3x_1 + 2x_2 \le 12$
 $x_1, x_2 \ge 0$

11. Given the payoff matrix

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Find the value of the above game using mixed strategy.

2

_×__

12

12

6